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(1) Abstract  

 In past decades, computational translation has been a widely used tool due to its accessibility and 

ease of use. Despite its popularity, computational translators are second-rate compared to multilingual 

humans who can provide natural translations of phrases—which computational translators cannot. This 

paper presents algorithms and techniques of a mechanical translator that uses context to drive the transfer 

of phrase representation from English to Japanese thus effectively producing a translation. This translator 

consists of three distinct steps. The first takes raw text in English, it is tokenized, and each token is then 

classified according to its part of speech. These tokens act as terminals in a sentence tree that is constructed 

using a bottom-up technique. Given a sentence tree, the next step works to manipulate the internal nodes 

(non-leaf) nodes of the sentence tree to reflect an ordering of nodes consistent with the sentence structure 

Japanese language: Subject-verb-object in English to subject-object-verb in Japanese. The last step 

involves manipulating the terminal nodes in the sentence tree so that the translator ‘translates’ English 

words to Japanese, verify conjugation, and that the use of particles is correct. We verified the effectiveness 

of the proof-of-concept translator by testing for usage of proper nouns, conjunctions, and all variations of 

tense features. 

(2) Key Words  

 English and Japanese Translation, X-Bar Theory, SLIM Theory, Linguistic Corpora 

(3) Introduction 

 Since computational translation is an inaccurate and inefficient tool, it is important to theorize a 

translator that uses context of language to aid its decisions in translation. words of a language are normally 

broken into distinct parts of speech (POS) which are classes of lexical items that have a specific function 

within the language. Sentence formulation is broken into three distinct parts which determine the sequence 

in which certain words are uttered: subject, objects, and verbs. These two observations of speech are good 

indicators of context that can be used by a translator to make decisions during the translation process. 

 The context-driven translator introduced in Figure 1 works in three divided phases with different 

related sub-algorithms. The workflow involves the building and modification of a syntactic sentence tree 

to derive Japanese translations. We present a brief walkthrough of the workflow provided in Figure 1 and 

its components. 
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 Step 1: Sentence tree construction. The goal in this first step is to construct a tree data structure 

representation of an English sentence through the recognition and encoding of individual words. It starts 

with the classification module which takes text input and encodes it into nodes. The classifier 

accomplishes this using a corpus database [1] that contains English words with their respective POS. The 

resulting nodes represent the different POS in the sentence.  

 Then the nodes are passed to the sentence tree constructor in the form of a root node for bottom-

up construction. The root node, which is the tense phrase node, initializes the recursive separation and 

encoding of nodes into the tree. The resulting sentence tree has nodes that represent the hierarchy of 

phrases, and terminals that represent the words of a sentence. 

 Step 2: Node Manipulations. The goal in the second step is to manipulate the nodes of the sentence 

tree to match the syntactic representation of a Japanese phrase. All the following functionalities are 

implemented using a visitor design pattern [2] to modify the sentence tree. This node manipulation step 

begins with a visitor we call a “stripper” (or strip visitor) that detects unsupported words in Japanese and 

removes them from the tree; subtrees of those nodes are then reconnected to ensure a well-formed sentence 

tree. Then another visitor, a “reorder” visitor, passes over the sentence tree to detect any subphrases that 

Figure 1: The workflow for context-based English to Japanese translation using sentence trees. 
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are out of place in the context of Japanese sentence order, and places them in the correct location in the 

tree. 

 Step 3: Terminal Manipulations. The goal of the final step is to manipulate the words encoded 

into the terminals of the tree, so that the text can match Japanese words. Once again, the functions use a 

visitor pattern to modify the tree. It starts with the “translation” visitor where a terminal’s text is sent to a 

parallel corpus database and gets matching Japanese words. Next, is the “conjugation” visitor, where a 

terminal’s conjugation of POS is verified. Finally, the “particle” visitor visits each terminal and makes 

sure that the correct Japanese particles, which function as linguistic markers, are present. 

(4) The Theoretical Frameworks of The Translator  

 Computational Translation, or Mechanical Translation is an approach to the task of translation that 

uses specific computational tools to achieve a transfer of text or speech from one language to another. 

Like other computational disciplines, it tries to mimic the previous work of humans in a particular field 

of study. However, compared to human translation, computers perform relatively worse and miss out on 

the translation of linguistic discrepancies between language—which is intuitively handled by multilingual 

humans [3]. So, the problem is how can we get to the point where a translation system can achieve these 

translations? This is a notion that many scholars disagree on.  

 Computational Translation now exists in an interesting state of contention where scholars are 

perpetually divided between the process of Statistical Machine Translation (SMT) and Neural Machine 

Learning (NMT)—with many defending the use of NMT over SMT [3] [4]. The critiques of both are both 

in its use of data. SMT uses corpora, or knowledgebases of lexical information, to facilitate translation, 

which its efficiency is critiqued as being limited to the quality of the corpora. On the other hand, NMT 

uses Machine Learning (ML) to train models on lexical data to create relationships between words of 

different languages, which is critiqued for being limited to the quality of the test data. Also, NMT is very 

“data-hungry,” and mines internet-accessible data to train its models [4]. This “data-hungry” model is not 

remarkably effective for languages without media applications [4], whereas SMT can if the corpus is well-

formed. 

 However, both methods are valid as they can be used in conjunction to solve different sub-

problems of translation. Therefore, the scope of this research relates to the implementation of an SMT 

context-driven translator to provide accurate translations. The translator will focus on the translation of 

text from English to Japanese. Both languages are relatively diverse with different linguistic attributes, 

and it is theorized that SMT can use context to effectively solve discrepancies between the languages.  

 Since translation is a task that belonged solely to linguistics before the discipline of computational 

translation, it would be inappropriate not to incorporate linguistic frameworks into a translator. Thus, a 

translator would be refined in its actions instead of using product-driven mechanisms to achieve 

translations. For this, the translator uses the linguistic syntax theory of X-Bar as the framework [5] for 
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structuring and organizing lexical items in a phrase. Like SMT, X-Bar is very contentious among 

linguistics, and this project intends to prove that X-Bar is a useful concept of phrase representation that is 

effective in the translation of language over other syntax theory. 

 The following sections describe the tools and concepts necessary to create an efficient and accurate 

translator. 

(a) SLIM Framework 

 Previously, we introduced the concept of 

computational translation and its lacking to match 

the effectiveness of human translators. This pitfall 

in mechanical translation’s ability to produce 

natural translations implies that translation is one 

of the few tasks in which humans outperform 

computers. This fact asserting outperformance is 

explained by Hausser, [6] in which this pitfall is 

not due to the state of computing, but to the fact 

that—unlike computation—linguistics is yet to 

find a “comprehensive, verifiable, functional theory of language.”  

 Essentially, computation disciplines are uniform in theory which has been verified through 

scientific and mathematical proof, while linguistics does not have a unifying cohesive theory that explains 

the behavior of all languages [6]. However, explaining the behavior of all languages is an impossible task 

as language is one of the most variable concepts to exist. Each language exhibits themselves differently 

with diverse linguistic attributes. This incohesive nature of linguistic theory is why many theories are 

constantly critiqued or dismissed—as we will see with X-bar Theory.  

 The intent of a computational translator should not be one that treats language as a uniform task 

but tries to encode the unique representations of different languages and translates through algorithms 

catered to the specific translation of two languages. In this translator we cater on the translation of English 

to Japanese in recognition of this notion. 

 Despite the variability of language, scholars have theorized techniques for making translation more 

efficient. Provided in Figure 2 is the SLIM Theory, which Hausser [6] claims is a “functioning, 

mathematically precise, and efficient theory” of mechanical translation [6]. Of the four principles in Figure 

2, it is valuable for Hausser to include the ontological principle which treats translation as a cognitive 

process between humans—and not simply an abstract task capable by anyone or anything. Through its 

inclusion, it acknowledges the innate human ability of speech formation, and that a computational 

translation system would mimic these human behaviors. Additionally, the inclusion of a functional 

Figure 2: The components of SLIM Theory, as described by 

Roland Hausser to be a “functioning, mathematically precise, 

and efficient theory” for mechanical translation [6]. 
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principle, which recognizes the nature of a word having literal and contextual meanings, forces the 

development of a translator sensitive and driven by context.  

 SLIM Theory is implemented in this translator to act as a framework that will produce the natural 

translations desired. It is important that mechanical translation software uses linguistic concepts since it 

is essentially its child in the scope of history. Centuries of research has gone into linguistics, and it would 

be foolish to ignore it. Therefore, it is impossible to make accurate algorithms that operate on language 

without studying the behaviors of such languages. 

(b) SMT vs. NMT 

 There exists a noticeable schism in the computational translation’s schools of thought. On one 

hand, there are advocates for Statistical Machine Translation (SMT) which employs a linguistic corpus 

which is a large database that contains linguistic lemmas and data such as its frequency in specific texts. 

Therefore, SMT uses empirical data on the frequency and context of words to provide a more cohesive 

and context-sensitive translation [7]. On the other hand, there are advocates for Neural Machine 

Translation (NMT) which uses Machine Learning (ML) techniques to train a model to learn and predict 

the equivalent meaning of phrases between languages. With fervorous advancements among ML, many 

think that it is objectively better. This is not necessarily the case, as SMT has many attributes that make it 

an effective method of translation. 

 SMT’s attributes are especially useful in the scope of solving context-dependent translation 

problems. The main feature of SMT is a linguistic corpus that organizes words of a language and relevant 

linguistic information. One instance of relevant linguistic information is the POS tagging that enables the 

organization of lexical items into their respective parts—such as nouns, verbs, adjectives, etc. POS tagging 

provides richer contextual information for a sentence and improves decision making in translation [8]. 

Additionally, POS tagging enables systems to interpret the structure of sentences without knowing the 

exact translation [8]. Essentially, regularities in phrase structure and POS can be used as context and can 

make decisions to attain translation without knowing the individual words. This fact is emphasized in the 

translator where the meaning of words is not needed to drive translation. In fact, translation of words after 

a Japanese phrase structure is derived is the only instance where a word meaning is needed. 

 However, there are some detriments to POS tags, as certain POS can often be redundant and can 

hinder decision making. POS, like nouns, are known to be strong in aiding decision making, while 

redundant words such as determiners impede the decision making of translation [8]. However, it is 

theorized in this translator that by treating certain POS as more important through a precedence hierarchy, 

then the instances of hinderance in POS tagging can be minimized. In such a hierarchy POS like verbs 

and conjunctions are treated as superior in contextual meaning than that of a noun or determiner. Therefore, 

representations of phrases can easily be discernable from the existing POS in the phrase. 
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 When comparing SMT and NMT it is hard to determine if one is objectively better than the other 

because they both yield accurate results. However, both techniques are known to have their own detriments 

such as ill-defined test data of ML models in NMT and the management and expansion of a corpus in 

SMT. However, when it comes to translating a simpler abstraction of language, such as a programming 

language, it becomes clear that one technique outperforms the other. According to Phan and Jannesari [9] 

whom employed the use of 2 SMT’s and 2 NMT’s to translate source code from one programming 

language to another, they discovered that translation yielded a percent accuracy of 60-90% from SMT and 

59-83% accuracy from NMT [9]. From these results they asserted that when translating source code that 

SMT outperforms NMT in their current state [9]. This fact proves that 

SMT is a relevant approach to mechanical translation, and if SMT can 

outperform NMT for a simpler abstraction of language, then it is 

theorized that a natural language translator will yield accurate 

translations if it employs a SMT system.  

(c) Syntax Trees and X-Bar Theory 

 Mechanical translation requires computational operations to act 

as processes in the task of translator. These operations should be 

efficient and can be efficient if the representation of phrases to be 

translated are organized in an efficient and logical manner. The 

linguistic field has produced many frameworks pertaining to the 

representation of phrases as syntactic trees that are built from phrase 

rules in a generative grammar.  

 Syntax trees in linguistics are the hierarchical organization of 

lexical items within a phrase, and a traversal of the sentence tree produces the sequential utterance of 

lexical items of a phrase. However, there have been many competing theories of generative grammar—

and linguists disagree on most of them. The critique of generative grammars derives from their perceived 

complexities and limitations [5]. Its complexity is not referring to its computational complexity which 

trees perform particularly well. Rather, complexity refers to the complex grammar rules that are needed 

to provide well organized sentence tree structures. If we treat translation as a solely human task, this notion 

against generative grammar is agreeable. However, the conditional-based rules of generative grammar are 

a task computer exceed in. As for the limitations of syntax trees, they can only do so much in the usage of 

irregular language. Syntax trees can organize the lexical items of a sentence well, but in the context of 

translation, it can only produce natural translations for grammatically correct phrases. This limitation is 

true; however, these cases of irregular language are perfect instances to integrate NMT to help supplement 

the areas that SMT lacks. 

Figure 3: Structure of the X-Bar phrase 

node [10]. The variable X is the head 

or POS (Noun, Verb, etc.) that carries 

the most meaning. the X-bar (X’) 

establishes a close connection between 

X and its complement. The specifier are 

phrases that come before the head. 
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 Despite the critiques of generative grammar, the representation of sentences as a hierarchical tree 

is valid in the context of translation. The translator uses X-Bar Theory which is a theory of syntax that 

creates representations of nuanced phrases (See Figure 3). X-bar aims to make stronger predictions as to 

what constitutes a grammatical sentence [10]. Their key feature, the X-bar node, is an extra node of 

abstraction that permits nuanced or "non-flat" phrase structures so that phrases can be independent of each 

other yet have associations [10].  

 Another feature of X-bar theory is the assumption that phrase structure is identical for all POS and 

all languages. While a bold assumption, it is based on some truth. Many languages share a commonality 

in phrase structure where the head (lexical item carrying meaning) of a sentence tree shares a more 

intimate relationship with their complement than specifiers [10]. This fact is reflected in the structure of 

an X-phrase (XP) node where the first level of the phrase includes a specifier (“I” in “I went home”), and 

the second level includes a complement (“home” in “I went home”). The complement is placed next to 

the head (“went” in “I went home”) of the phrase to preserve this close relationship, and therefore has the 

specifier come before the head. 

 In the context of computation, X-bar can be expressed as binary tree structure [5], which is 

beneficial to this translator because it will produce efficient algorithms of translation that can perform on 

and store information efficiently.  

(5) Satisfying Translation Frameworks and Research Objectives  

 The objective of this translator is to experiment with SMT techniques in conjunction with an X-

bar phrase representation to produce accurate English to Japanese translations. The translator uses the 

SLIM theory as a framework to bring this translator to the standard of a functional and mathematically 

precise mechanical translator. Figure 4 briefly explains how each principle of SLIM theory is satisfied 

through the translator’s components to summarize the assertions made in this section. 

 The first principle [6] of SLIM that needs to 

be satisfied is the methodological principle of 

a syntax composed of concrete word forms. 

The use of SMT and corpora will aid 

translation by having a cohesive and efficient 

store of lexical knowledge available. In this 

translator, 3 main corpora are used by 

components within the translator, where one of 

which stores concrete word and modified word 

forms of English [1], as well as equivalent 

lexical items between English and Japanese. 

Figure 4: Reflection of the SLIM theory in the context of the tools 

used for the translator. “Reflecting Component” details how each 

principle from Figure 2 is satisfied through the translator’s 

components. 
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Furthermore, the use of syntax trees satisfies the need for a cohesive syntax, and the X-bar structure 

supplements this need through a structure that organizes nuanced phrases in a universal manner. 

 Second, is the empirical principle of a sequential progression of words within a sentence [6]. Once 

again, X-bar can satisfy this principle. The concept of the head, which is the “X” in Figure 3, allows not 

only for the sequential ordering of words, but the sequential ordering of constituent phrases. The 

generative grammar of X-bar understands and incorporates tendencies of nuanced speech. Like in the X’ 

node in Figure 3, the “non-flat” phrase representation establishes that a head and its complement share a 

close relationship, whereas the head and the specifier in the XP node in Figure 3 share a weaker 

relationship. Therefore, X-bar grammar is one that logically orders phrases efficiently, and a traversal of 

the resulting sentence tree would reveal the correct sequence of words. 

 Third, is the ontological principle of recognizing language as a cognitive process that exists 

between speakers [6]. The assertion made by X-bar theory claims that their phrase representation is the 

same in all languages [10]. They also claim that it mimics human behavior due to the introduction of the 

X’ node that creates relationships between the head, complement, and specifier which are meant to 

represent how humans construct phrases [10]. Therefore, X-bar is assumed to satisfy the ontological 

principle due its satisfaction of recognizing sentential representation from a human cognitive aspect, and 

the cognitive assumption that derives from the assertion of being a universal representation for phrases in 

all languages. 

 Finally, the last principle is the functional principle [6] of recognizing the concrete and contextual 

meanings of words. This is satisfied through SMT and X-bar. Once again, the main assistance from X-bar 

manifests in its specific phrase structure. Upon searching for the contextual meaning of a head in a XP, 

there is an expected and short path to the contextual modifiers of a head. This makes it so that switching 

between contextual and concrete word meanings are simple and inexpensive operations. SMT assists the 

translator through POS tagging and word searches into the corpus datasets. The lookups for specific words 

into a parallel corpus, which contains one-to-one equivalent words between English and Japanese, can 

achieve a word’s translation in efficient time. Also, POS tagging allows for each node to belong to a 

specific class of nodes. In this translator, nodes are divided into phrase nodes, bar nodes, and terminals 

which have unique implementations for all POS in a language. Using type referencing for conditional 

statements is an efficient way to figure out what a node is without altering the structure of the whole 

implementation. Therefore, individual translation algorithms can access these nodes and make context-

dependent decisions.  

(6) The Translation Algorithm  

 Now that we have established the general workflow of the system, we provide a walkthrough of 

the system in Figure 5 and its individual components. The sentence used in this example is “She found a 
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job last Friday” which translates into Japanese as watashiwa saigono kinyoubini shigotowo mitsuketa (私

は最後の金曜日に仕事を見つけた). 

 

(d) Preprocessing and Encoding Text into Nodes 

 The first stage of the translator are the components that set-up and verify the nodes to be used in 

the sentence tree. In the first part of preprocessing, text discrepancies are recognized and doctored so that 

it will not cause errors for a search into the corpus. Such discrepancies include the inclusion of contractions 

to exhibit tense features. For example, words like “won’t” are a contraction of the tense feature “will” and 

a negative “not.” Such contractions do not exist in Japanese, 

so instances of contractions are split up into two distinct 

lexical items. 

 Following preprocessing, each word of a phrase is sent 

to the primary corpus for a lookup. The primary corpus [1] 

contains the lexical information of English words and 

corresponding lexical information like 

POS (see Figure 6). However, the 

primary corpus data contains only the 

lexical information for concrete word 

forms. For modified word forms like 

“went” (modified from “go”) or 

“working” (modified from “work”) 

they will fail the initial lookup and 

perform another search into the 

Figure 6: Primary English Corpus that contains 

unmodified word forms with corresponding 

lexical information. 

Figure 7: Secondary English Corpus that contains modified word forms and 

maps them directly to their unmodified form with their corresponding POS. 

Figure 5: Overview of the context-dependent translation system. Process is split into three phases in which each phase works 

toward achieving a phrase representation of the target language Japanese. Used for reference throughout the introduction. 
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secondary corpus [1] (see Figure 7). This corpus contains modified word forms and maps them directly to 

their unmodified word forms. Therefore, if an English word exists in the corpus, they it can be represented 

fully in the resulting tree. However, lexical items like proper nouns are not in the corpus, so the translator 

assumes that unfamiliar words are nouns. 

 However, testing iterations of the translator revealed discrepancies in word encodings. For 

continuous forms of verbs such as “working” it would be encoded as an adjective. To solve such an issue,  

the translator implements a context verifier that ensures that POS makes sense contextually. For example, 

Adjectives must reference a noun or reference another adjective. In cases where such requirements are not 

met, the nodes are re-encoded to find the correct POS that should exist. 

(e) Building the Sentence Tree 

 The purpose of the preprocessor was to 

provide the terminals representing words of a 

phrase, which are then used as the building blocks 

of the sentence tree. In the next phase of the 

algorithm, the creation of a sentence tree using 

context derived from the type of nodes present is 

accomplished. The sentence tree defined for this 

translation algorithm is one that uses the X-Bar 

node representation that allows for phrases to 

have a specifier and complement if necessary. 

The resulting tree, as shown in Figure 9, stores 

the subject, verb, and objects as children of the tense features in a sentence. The structure uses vertex 

nodes (NP, N’) to create hierarchical relationships between phrases, and uses terminals to represent the 

lexical items of a sentence. 

(1) Building the Tense Phrase  

 In this first step we make a sentence tree out of a list of nodes. These nodes are sent to the root 

node of a sentence tree which is the TP node (see Figure 8). In X-Bar Theory, TP is a phrase node that 

incorporates the requirements for a complete sentence.  

 A TP node has a left child that represents the subject of the sentence. The right child is known as 

the T-bar (T’) node and allows for its right child to contain a verb phrase that represents the verb and 

object of a sentence. The left child, however, is known as the tense (T) node because it stores all the tense 

features, such as present/past or modal auxiliaries, of the sentence. Theoretically, the TP node is an 

overloaded XP node—evident from Figure 8. This is because the positions where the subject and verb-

object phrases exist in a TP are the locations where specifiers and complements exist in a regular XP. 

Figure 8: Comparison between the X Phrase (XP) structure and 

the Tense Phrase (TP) structure. See Figure 3 for XP information. 

TP captures the tense features and modal auxiliaries (“can,” 

“should,” etc.). These features are encoded in the Tense (T) 

terminal. Like the X’ node, T’ establishes a close connection 

between tense and the verb phrase, whereas TP exhibits the 

placement of a subject before a Verb phrase. 
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 In the TP, the list is separated and passes the nodes 

containing the subject (“She”) of the sentence to the left 

child of TP—where the subject subtree is encoded. In this 

case, the subject is a simple noun phrase containing the 

pronoun “She.” The rest of the nodes (“found,” “a,” “job,” 

“last,” “Friday”) go to the right child which is the T’. In 

T’ the tense information of the sentence is recorded in its 

left child which is the T terminal.  

 After the recording of tense information, the same 

nodes (“found,” “a,” “job,” “last,” “Friday”) are always 

sent to verb phrase (VP) so that the verb (“found”) can be 

separated from the objects (“a,” “job,” “last,” “Friday) of 

a sentence. We know it is a VP because the X-Bar structure 

of nodes states that the right child of T’ is the VP required 

for a complete sentence [10]. Therefore, we are in VP and need to discern the location of the verb in 

relation to the remainder of the sentence. the verb “found” does not have any specifiers, or words 

preceding it, so we can pass on to the verb bar (V’) level. V’ separates the verb terminal and the remaining 

sequence of nodes and encodes “found” as the V’s left child. Once the verb is encoded at the V’ level, the 

remaining objects are sent to an adjunct (Adj) node.  

(2) Building the Adjuncts 

 The adjunct node acts as a separator between constituent phrases so they can remain separate 

subphrases. The direct object of the verb “found” is “a job,” so this constituent phrase is the left child of 

the adjunct so that it is next to the verb in the context of a sentence tree’s traversal. This position is known 

as the direct object because it is the complement of the verb in the sentence. The phrase “last Friday” is 

an adjunct phrase, so it goes to the right child of the adjunct node so that it comes last in the context of a 

sentence tree’s traversal. 

 These constituent phrases that reference the adjunct node are determined through an adjunct 

identifier, which breaks down individual constituent phrases. For the case “a job” it consists of an article 

and a noun which is recognizable constituent phrase to the identifier. Similarly, the case “last Friday” 

Figure 9: The building of the English sentence tree for 

the sentence “She found a job last Friday.” 



Dewey 12 

 

recognizes the sequence of two nouns as a constituent 

phrase. These phrases are encoded as phrases separately, 

so as to not put them directly under the same hierarchy and 

inadvertently make the phrases dependencies of each other. 

 The individual constituent phrases are encoded using 

the precedence of certain POS to determine the 

representation of the constituent phrases. These 

precedencies defined for POS in the translator are reflected 

in Figure 10. Realistically, a sentence tree with X-bar is 

susceptible to right leaning trees if each node is treated 

with the same importance. With a precedence feature, 

sequences can be broken down into well-organized nodes. 

For example, “a tough job” would be recognized as an 

adjective phrase with a noun phrase (NP) complement 

rather than a NP with an adjective specifier. The reason for 

organizing phrases as such is that most phrases are innately NP because most phrases describe nouns. 

However, through this algorithm’s precedence search, it can make more context rich decisions rather than 

the default POS context always being a noun.  

 Therefore, using this precedence search, the constituent phrase “a job” gets encoded as an article 

phrase (AP) (“a”) with a NP (“job”) complement. Similarly, the constituent phrase “last Friday” gets 

encoded as a NP (“Friday”) with a NP specifier (“last”). These constituent phrases are then made into the 

left and right child of the adjunct node, which effectively separates them. 

(f) Processing the Sentence Tree 

 The purpose of building a sentence tree was to provide a basis for organizing a sentence’s structure 

in a logical and uniform matter. The remainder of the translation algorithm then manipulates the sentence 

tree to conform to the structure of a Japanese sentence. These manipulations are broken into specific 

algorithms that all implement a unique visitor pattern. Visitors are a type of design pattern for object-

oriented systems—such as a tree populated with nodes--which emphasize flexibility [11]. They allow for 

the definition of many unrelated functions to be defined without ever changing the classes of an object 

[11]. The ability to define functions without modifications supports the open-closed principle for clean 

code, which allows for extensions of a system without modifying the current implementation. In this 

algorithm visitors are used to transverse the sentence tree and make decisions to the structure of the 

sentence tree and the information held in its nodes. The main advantage aside from the open-closed 

principle is that visitors, through accept methods in an object’s class, remove the need for frequent 
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Figure 10: Precedence of nodes in terms of 

identifying a head for an XP phrase. POS are ordered 

based on magnitude of meaning. Conjunction is the 

most important because it connects large phrases 

which would benefit from a higher position in the tree 

hierarchy. Conversely, Nouns are on the bottom 

because any phrase can have innumerable nouns—

which may result in noisy trees without this 

precedence structure. 
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recompilations of an object’s class and frequent typecasts to determine classes [11]. Therefore, utilization 

of visitors is sure to improve the overall complexity of the algorithm. 

(3) Node Manipulations: Node Strip and Reordering Visitors 

 After the sentence tree is constructed, the translator 

manipulates multiple nodes to (1) remove unnecessary 

lexical items and (2) reorder the sentence tree to achieve a 

Japanese word order—relying on POS context to make 

decisions. Through these manipulations of the tree, we can 

eliminate discrepancies between English and Japanese 

sentence structures before translating the tree. Essentially, 

it is a form of preprocessing for the upcoming word 

translation algorithms that come after these node 

manipulations. The resulting sentence tree is one that 

represents an English sentence in Japanese SOV sentence 

order. 

 The first visitor which searches and eliminates 

unnecessary lemmas from the SL for the TL is the node 

strip visitor. This visitor exists due to a common 

discrepancy between phrase representation in English and 

Japanese. Essentially, Japanese lacks a clear future tense, while in English words the word “will” is very 

indicative of an action happening in the future. In Japanese, future tense is not discernable from verb 

conjugations and use the same conjugations as present tense. Therefore, in terms of conforming to the 

Japanese sentence structure, we remove any words that do not exist in the same context as English words. 

Similarly, for articles, there is no definite (“the”) or indefinite (“a”) article for nouns in Japanese. Therefore, 

these unnecessary words must be removed from noun phrases. Negligence to remove inequivalent words 

from the structure of the sentence tree will result in a noisy sentence tree with discrepancies. Therefore, 

the strip visitor will result in a sentence tree that reads “She found job last Friday.” 

 However, it is pertinent to discuss the removal of words that exist in both English and Japanese 

but result in a noisy sentence tree. In English, the verb “to do” can exist independently in phrases like “do 

your homework.” However, the verb can also exist in conjunction with other verbs—especially with 

negative modalities—in phrases like “I do not want anything.” In Japanese, “I do not want anything” 

would not include the lemma “do” as a separate entity because the verb “wants” expresses “do” implicitly 

and “not” is expressed as a conjugation of the verb. Therefore, some sentences initially produced noisy 

Japanese trees with confusing combinations of a verb with “do” and “not.” 

Figure 11: Node Strip Visitor: Deletes article phrases 

and verb phrases that do not have equivalents in 

Japanese linguistic properties. The article phrase 

(AP) is detected by the visitor and connects the nested 

noun phrase (NP) to the parent of AP while severing 

previous connections of AP. 
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 After the complete removal of noisy lemmas, the 

sentence tree is then passed on to the reordering visitor. 

Sentence word order is arguably the largest discrepancy 

between English and Japanese translation. Objectively, 

English has a “Subject-Verb-Object” (SVO) ordering of 

phrases, whereas Japanese has a “Subject-Object-Verb” 

(SOV) ordering of phrases. This means that the structure 

of nodes and their children must match the traversal of a 

Japanese sentence tree. To accomplish this, the visitor 

visits each node and reorders the node’s children based on 

encoded instructions. For example, upon visiting any verb, 

the visitor’s encoded instructions for a verb phrase 

switches the node’s children so that the verb comes last. 

However, in some instances a more complex approach is 

required, and a node’s children are reordered based on 

conditionals influenced by specific situations, instead of generalizations based on POS. For example, 

when a visitor visits an adjective phrase node, and it detects a “not” phrase attached to its specifier (left 

child), it reorders the node’s children so that the “not” phrase comes after the adjective like it is in Japanese. 

 For “She found job last Friday,” The T’ node needs to be reordered so that its right child is the T 

terminal with tense information, which should come last. Then, both the VP and V’ node’s children need 

to be reordered so that the verb comes after the objects. Finally, the objects need to be reordered so that 

the direct object “job” is next to the verb “found.” The reorder visitor will result in a sentence tree that 

reads “She last Friday job found.” 

(4) Word Translation Visitors 

 The node stripping and reordering visitor are 

similar in that they manipulate the vertex nodes of the tree. 

The remainder of the visitors manipulate the terminals of 

the sentence tree to achieve the grammatically correct 

representation of the Japanese syntax. This is done through 

(1) transferring English text to Japanese, (2) verifying or 

constructing Japanese conjugations, and (3) verifying or 

constructing Japanese particles. Since particles have a 

post-fixed position in relation to a word, they are ordered 

as the last task before achieving a translation. These 

Figure 13: The resulting Japanese sentence tree after 

word translator visitors are finished processing. 

Figure 12: Node Reorder Visitor; In this example 

verbs need to come last in the Japanese sentence. 

Therefore, the verb phrase’s (VP) specifier and bar 

node need to be reordered. Similarly, the verb bar (V’) 

node’s complement and head need to be reordered. 
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terminals are also manipulated using a visitor pattern that 

relies on POS context to make decisions.  

 The translation visitor transfers English text to 

Japanese text upon visiting every terminal of the tree. At 

each terminal it calls a translate function that accesses an 

English and Japanese parallel corpus which maps an 

English word to a Japanese word (see Figure 14). This 

function is efficient due to the organization of lexical items 

in an English Japanese Parallel Corpus. A Parallel Corpus is one that maps the lemmas of the SL to the 

lemmas of the TL. Therefore, the word translation function relies on the efficiency of database software.  

 Unfortunately, since a custom parallel corpus was constructed for this project, this database pales 

in comparison to the previous English corpora databases. An existing well-formed parallel corpus of 

English and Japanese did not exist, and as a result, the project required the manual construction of a 

parallel corpus. The database is more concise and only includes words that are used in test cases. 

Inadvertently, this finite dataset might contribute to overfitting on test data—which could pose issues for 

future work. 

 The other two visitors are relatively complex. In the verification or construction of Japanese 

conjugations tense features and other modifiers such as negatives are searched and used as context to 

produce proper conjugations with the right tense and modality. In the example, the verb (“found”) is 

conjugated correctly as mitsuketa (見つけた) through the parallel corpus data. 

 Since this visitor focuses on manipulating the terminals of the tree, in the Japanese representation 

words modified with “not” are still treated as different words. Using the syntax structure, “not” comes 

after a word due to the reordering visitor, and this matches with the Japanese construction of verbs. 

Japanese verbs are ordered with modifiable stem, a conjugation for tense, and a conjugation for its 

modality (positive or negative). Exploiting this fact, we conjugate verbs and adjectives in the sentence 

tree to include the stem and tense conjugation, but in the case of a negative “not” connected to its phrase, 

the tense conjugation is left out and handled by the “not” terminal. For example, “did not find” would be 

treated as two words “not” and “find.” After reordering this phrase is “find not [past],” which the 

translation and conjugation visitors would translate to mitsuke naka tta (見つけなかった). 

 Simple conjugations for other POS exist and mainly pertain to the population of possessive no (の) 

particles. For possessive noun phrases like “teacher’s instructions” this no particle is inserted between the 

two nouns. Identically, determiners and articles like “her wallet” inserts a no particle between them. In 

this example the constituent phrase “last Friday” uses an ordinal modifier, therefore we would need a no 

particle here as well. So, the translation of “last Friday,” saigo kinyoubi (最後金曜日), would be modified 

to saigo no kinyoubi (最後の金曜日). 

Figure 14: English and Japanese Parallel Corpus that 

contains one-to-one mappings of English and 

Japanese lexical items and corresponding POS. 
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 Conjugation also accounts for the diverse types of verbs and adjectives that exists with Japanese. 

Japanese verb conjugation also has three classes of verbs that require different conjugations. The godan 

(五段) verbs are the most common and has five possible stem conjugations. The ichidan (一段) verbs are 

common but have irregular conjugations due to an -iru/-eru (ぃる/ぇる) verb ending. Finally, the irregular 

class of verbs contain the words “to do” (suru する) and “to come” (kuruくる). Adjectives have two 

classes: the adjectives ending in an -i (い) sound and adjectives ending in a -na (な) sound. 

 Finally, the algorithm ends with the particle population visitor. The verification or construction of 

Japanese particles is another complex algorithm which visits each constituent phrase’s head and decides 

what particle is appropriate to attach for each phrase. In Japanese, each constituent phrase is assigned 

some particle which denotes its relationship with both the verb and the sentence. However, using X-bar 

theory we can discern the location of phrase specific particles. For example, the head of the TP’s left child 

is the subject of the sentence [10]. Therefore, we can recognize “she” (彼女) as the subject and add the 

particle wa (は) to denote this function. Furthermore, the head of the right child’s phrase in a V’ is the 

object of the verb [10]. Similarly, we can recognize “job” (仕事) as the object and add the particle wo (を) 

to denote this function.  

 However, the particles for other constituent phrases like “last Friday” poses issues for the translator. 

In Japanese, most constituent phrases require a Japanese particle to give meaning to the phrase in relation 

to the verb. In the phrase “last Friday,” we know that it is referring to a specific location in time, in which 

the particle ni (に) is used. However, such a decision cannot be made on POS context alone and will 

require some other module to effectively identify the correct particle to use. 

 After the verification or construction of Japanese particles, the translation algorithm attains a 

hierarchical tree representation of Japanese transferred text from English in which a traversal of the 

sentence tree would produce the correct sequence of lexical items. 
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(7) Results and Observations 

 The translator was able to produce Japanese translations for 60 English sentences in past, present, 

future tense, as well as their continuous, simple, and perfect forms. An excerpt from those test cases is 

provided in Figure 15 below. 

 

 The output of the translator gives insight to the type of sentences covered. In addition to all tense 

features, there are grammatical structures that are accurately represented in Japanese. For example, as seen 

in test #5 of Figure 15, the word “during” follows the Japanese pattern: Noun + の間. Furthermore, 

conjunctions in the context of two nouns, such as in test #7 of Figure 15, is accurately represented in the 

Japanese form: Noun + to (と) + Noun.  

 We also observe the correct nuanced ordering of POS in sentences like test #9 of Figure 15. In 

Japanese, adverbial phrases usually come at the beginning of the phrase, unlike English that usually 

introduces them after the subject. Owing to the X-bar structure, we can effectively separate “currently” 

from the subject “I” and reorder it so that genzai (現在), meaning currently, comes first in the sentence. 

The effectiveness of the reordering algorithm and X-bar structure repeats again in test #14 of Figure 15 

where we effectively separate “always” from the subject “We” and reorder it so that itsumo (いつも), 

meaning currently, comes first in the sentence. 

Figure 15: Excerpts from the testing classes of the translator. Test were defined on the different types of tense features and their 

verb forms. The table provides two instances from each form of tense as provided in the “Tense” column. 
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 Smaller discrepancies are also observed to be implicitly solved by the translator. For example, in 

test #1 of Figure 15, the contraction “I’ll” and, in test #6 of Figure 15, the contraction "wasn’t” are handled 

by the preprocessor and converted into two separate words: “I will” and “was not,” respectively.  

 Despite the progress of the translator, there are also some problems that were encountered. First, 

the overfitting of the English-Japanese Parallel Corpus in the translation visitor handles cases that 

otherwise would not be handled by the translator. For example, in test #8 and test #13 of Figure 15, the 

words “Rachel” and “8:00” are examples of words that are translated well due to the overfitting of the 

parallel corpus. “Rachel” is a proper noun, and if a proper noun like “John” was used, the translation 

visitor would encode a null value into its terminal rather than jon (ジョン) in Japanese. Similarly, “8:00” 

is a concept of time, and the Japanese represent time differently. The parallel corpus returns “8時,” but 

for other cases it would need to follow the format for Japanese time: Hour + ji (時), Minute + bun (分). 

 Furthermore, we observe that the accurate use of verbs is not being used effectively. For example, 

in test #11, the phrase “play the piano” does not use the correct word for “play” in Japanese. The current 

word it translates to asobu (遊ぶ) does not make grammatical sense in the context of a “piano,” and instead 

should be hiku (弾く). This error also occurs in test #10 where “going out” should be the verb dekakeru 

(出かける) and not sotoni iku (外に行く). 

 Lastly, we observe that Japanese particles are not populated effectively. As for translation, it is 

simple to translate prepositional particles due to their words in the parallel corpus matching the 

prepositional particles in Japanese. However, for other constituent phrases it was harder to discern the 

correct particle. This is because Japanese particles have nuanced applications that can not be discerned on 

POS context alone. Therefore, this translator assumes the particle ni (に) for certain noun constituent 

phrases, and the particle wo (を) for objects of the verb. While this assumption accurately portrays some 

particle usages, it is largely an ineffective feature that needs work. 

(8) Conclusions and Future Works 

 The original intent of this project was the implementation of an SMT context-driven translator to 

provide accurate translations. While achieving the original intent, we also engaged in experimentation 

with SMT and X-bar theories—which are widely critiqued in their respective disciplines. In the context 

of translation, X-bar is a valid theory of phrase representation and was the representation that aided the 

translator in contextual decisions. These nuanced decisions are from X-Bar’s inclusion of a bar node, 

which helped separate and organize unique features of a word and permitted nuanced tree structures 

without compromising the sequential ordering of words. The theory was able to accurately represent all 

the test sentences in both English and Japanese, which is evidence of the translator’s utility and emphasizes 

its universality. 

 As for SMT, the context dependent decisions generated was able to completely build and reorder 

the sentence tree with minimal uses of the words meaning. Therefore, the data complexity of the translator 
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is optimized without needing to consider word meaning as often. However, that is not to say that SMT is 

effective in isolation. SMT in conjunction with NMT techniques can efficiently translate phrases with 

great accuracy. A concern for NMT is the potential overkill of a ML model as the sole function of a 

translator. SMT is effective in translating grammatical sentences because it can discern grammar rules and 

derive similar phrase representations in other languages. However, for the cases that were missed in the 

translator like particle population, word representation, and irregular uses of language can be solved 

through the training of different ML models focused on specific tasks of translation. 

 In particle population a future project would implement a ML model that tests on Japanese sentence 

data to classify what particle is appropriate for a constituent phrase. Japanese particles often have 

ambiguous or complex usages that may not reflect the POS present in a sentence. Therefore, this is an 

instance where NMT would bring this translator closer to producing natural translations. 

 Furthermore, idiom recognition and management are important components to have. Idioms are 

an irregular use of language, so therefore the translator would be able to provide an accurate phrase 

representation, but the resulting translation would not make sense literally or grammatically. Therefore, 

another ML model that makes associations between English and Japanese idioms would be beneficial in 

producing natural translations. 

 Similarly, word representation is another area for improvement. In the previous section we 

observed the misrepresentation of some verbs which were not used appropriately in the context of its 

object. This can be solved with word embeddings, which are a complex but useful representation of words 

that are able to exhibit strong relationships with other words with the same meaning. Such an approach 

would require a ML model that can make associations between words and meaning. 

 Last, as described in Section (4), the English-Japanese parallel corpus that stores English and 

corresponding equivalents in Japanese along with parts of speech was created as a bespoke utility. While 

not ideal, no other existing tool provided the nuanced information required by the context-based 

translation. As with any custom tool or database, this might result in overfitting of the parallel corpus to 

the test data. Therefore, extensive data acquisition and organization is needed to provide the possibility to 

translate more sentences. 

 The proposed extensions for future work will move toward correcting the mistakes by the translator. 

The culmination of these future works are the steps needed to take the translator from a proof of concept 

to a deployable software product. 
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